QUALITY CHANGES IN PEANUTS SHIPPED BY RAIL UNDER CARBON DIOXIDE K. HOLD1 and D.M. WILSON2 ¹ Procter and Gamble Company, Lexington, KY, U.S.A. ² University of Georgia, Coastal Plain Station, Tifton, GA, U.S.A. #### ABSTRACT Forty-eight loads of shelled peanuts were shipped by rail from May 15 - October 5, 1991 from southern Alabama to Lexington, Kentucky. Rapid gaseous CO₂ filling stations were engineered to fill the rail cars to a concentration of 55-80% CO₂ (approximately 410 kg CO₂ per car) before sealing and shipment. Forty one loads were treated with CO₂ and seven companion loads were fumigated with PH₃. The maximum CO₂ concentration in the ambient atmosphere surrounding the cars was below 0.5% during filling and no elevated CO₂ was detected during unloading. The effectiveness of CO₂ fumigation depends on the retention of CO₂ for several days. There was complete insect control in all but two of the cars treated with CO₂, and these had to be refumigated with PH₃ in Lexington. After shipment, neither the moisture content (m.c.) nor the microflora of the peanuts shipped under CO₂ atmosphere differed from those found with the PH₃ fumigation. #### **EXPERIMENTAL** This field trial was designed to find out if CO_2 fumigation of rail cars to approximately $60\%CO_2$ could be used to control insects while not adversely affecting the peanuts during rail shipment. Forty-eight rail cars (86,000 kg/car) of US no.1 shelled peanuts (6-7% kernel m.c.) were shipped from two locations in Alabama to Lexington, Kentucky in 1991 (Table 1). The initial and final CO_2 percentages in the atmosphere and number of dead and live insects at Lexington are given in Table 2. The incidence of fungi before and after transit is given in Tables 3 and 4. The numbers in Tables 3 and 4 represent % of 200 kernels from each location from which the fungus was isolated after incubation for 7 days at 30°C on malt salt agar containing 10% NaCl. Peanuts were sampled from the top and bottom of the rail car during loading and unloading. Fungi presence was tested before and after fumigation with CO₂ or PH₃. The m.c. was unaffected by the treatments. Table 1: Treatments of US no.1 shelled peanuts shipped to Lexington, KY from May 15 - October 5 1991 by 48 rail cars. | Shipping point | Treatment | Tempered ^a | Non-Tempered | Total | |----------------|------------------|-----------------------|--------------|-------| | Sunstates | CO2b | 11 | 6 | 17 | | Dothan, AL | PH3 ^c | 2 | 3 | 5 | | DOMCO | CO ₂ | 0 | 24 | 24 | | Headland, AL | PH ₃ | 0 | 2 | 2 | | | | 13 | 35 | 48 | Tempered - peanuts were tempered after removal from cold storage before unloading rail cars. Gaseous CO₂ was added during bulk loading. The entire CO₂ fumigation added about 15 minutes to the loading process. ^c Aluminium phosphide strips were used at the recommended dosage for peanuts. ## SUMMARY OF FINDINGS - 1. All Sunstates peanut shipments gave complete insect control, while two of 24 DOMCO shipments required refumigation with PH₃ in Lexington, KY. - 2. Costs were as follows: - a) CO₂ tank installation ranges from \$3,000-\$11,000. - b) 410 kg CO₂ were required per car, amounting to \$70/car. - c) Tank rental was \$425 per month, plus an annual rental fee. - 3. CO₂ filling stations were efficient. No vacuum developed in bulk cars. - 4. Peanut m.c. and microflora counts were similar after shipment for CO₂ and PH₃ treatments. - 5. CO₂ levels outside rail cars were less than 0.5% during loading and did not elevate during unloading. ### CONCLUSION Rail cars were fumigated successfully with CO_2 . The CO_2 treatment resulted in the death of insect adults and larvae when the CO_2 did not escape too rapidly. The CO_2 fumigation had a minimal effect on m.c. and fungal microflora during shipment in this field trial. Table 2: Selected data on CO₂ concentrations and insect control^{a,b}. | Fill Date | Unload
Date | Ship
From | Initial CO ₂ | Final CO ₂ | Dead
Insects | Live
Insects | |-----------|----------------|--------------|-------------------------|-----------------------|-----------------|-----------------| | 15 May | 27 May | DOM | 74 | 70 | 5 | 0 | | 16 May | 30 May | SSD | 64 | 58 | 0 | 0 | | 28 May | 6 Jun | SSD | 62 | 8 | 25 | 0 | | 7 Jun | 18 Jun | SSD | 77 | 60 | 0 | 0 | | 7 Jun | 20 Jun | DOM | 60 | 24 | 0 | 0 | | 10 Jun | 25 Jun | DOM | 60 | 10 | 0 | 0 | | 11 Jun | 26 Jun | DOM | 60 | 7 | 0 | 0 | | 12 Jun | 18 Jun | SSD | 75 | 5 | 0 | 0 | | 12 Jun | 22 Jun | SSD | 75 | 49 | 0 | 0 | | 14 Jun | 25 Jun | SSD | 73 | 23 | 0 | 0 | | 27 Jun | 3 Jul | SSD | 75 | 35 | 0 | 0 | | 28 Jun | 5 Jul | SSD | 75 | 48 | 0 | 0 | | 9 Jul | 15 Jul | SSD | 75 | 0 | 0 | 0 | | 12 Jul | 20 Jul | SSD | 73 | 30 | 1 | 0 | | 16 Jul | 24 Jul | SSD | 73 | 40 | 0 | 0 | | 16 Jul | 24 Jul | DOM | 60 | 20 | 8 | 5* | | 18 Jul | 24 Jul | SSD | 73 | 20 | 0 | 0 | | 24 Jul | 5 Aug | DOM | 58 | 4 | 1 | 0 | | 25 Jul | 5 Aug | DOM | 63 | 60 | 1 | 0 | | 31 Jul | 17 Aug | DOM | 58 | 4 | 0 | 0 | | 3 Aug | 16 Aug | DOM | 58 | 3 | 0 | 0 | | 8 Aug | 19 Aug | DOM | 58 | 5 | 0 | 20* | | 10 Aug | 19 Aug | DOM | 60 | 20 | 1 | 0 | | 14 Aug | 21 Aug | DOM | 58 | 10 | 1 | 0 | | 14 Aug | 23 Aug | DOM | 58 | 10 | 0 | 0 | | 10 Sep | 24 Sep | DOM | 60 | 5 | 8 | 1 | | 14 Sep | 25 Sep | DOM | 60 | 7 | 0 | 0 | | 27 Sep | 9 Oct | DOM | 60 | 0 | 3 | 0 | | 2 Oct | 11 Oct | DOM | 70 | 3 | 0 | 1 | a Shipping point: DOM = DOMCO, SSD = Sunstates. No live insects were found in the 7 cars furnigated with PH₃. b Loads marked with * were refurnigated with PH₃ in Lexington. Table 3: Mean incidence (average % from 41 cars) of fungi in peanuts before CO₂ treatment and after transit. | | Тор | | Bottom | | |--------------------|--------|-------|--------|-------| | | Before | After | Before | After | | Aspergillus flavus | 45 | 39 | 39 | 39 | | Aspergillus niger | 28 | 25 | 32 | 26 | | Other Aspergilli | 69 | 68 | 61 | 41 | | Penicillium spp. | 1 | 1 | 1 | 3 | | Fusarium spp. | 1 | 1 | 1 | 1 | | Other fungi | 13 | 19 | 19 | 26 | Table 4: Mean incidence (average % from 7 cars) of fungi in peanuts before PH₃ treatment and after transit. | 10.7 | To | p | Bottom | | | |--------------------|--------|-------|--------|-------|--| | | Before | After | Before | After | | | Aspergillus flavus | 57 | 56 | 42 | 40 | | | Aspergillus niger | 44 | 10 | 38 | 18 | | | Other Aspergilli | 63 | 65 | 93 | 87 | | | Penicillium spp. | 1 | 0 | 2 | 1 | | | Fusarium spp. | 1 | 1 | 1 | 0 | | | Other fungi | 21 | 16 | 23 | 31 | |